SIMDAX® GIVES YOU TIME IN ACUTE HEART FAILURE
SIMDAX® RELIEVES SYMPTOMS IN AHF

SIMDAX® improves symptoms of dyspnoea and fatigue in acute heart failure. In the Phase III regulatory study REVIVE, symptoms over the 5-day assessment period improved significantly more with SIMDAX® than with placebo when administered on top of the standard of care.1

Improvement in clinical status

<table>
<thead>
<tr>
<th>Patients improved or worsened (%)</th>
<th>Levosimendan + SOC (n=299)</th>
<th>Placebo + SOC (n=301)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improved</td>
<td>19.4%</td>
<td>14.6%</td>
</tr>
<tr>
<td>Worsened</td>
<td>-19.4%</td>
<td>-27.2%</td>
</tr>
</tbody>
</table>

The primary endpoint result in the REVIVE trial, composite consisting of patients’ subjective symptom assessments (at 6 hours, 24 hours, and 5 days) and signs of worsening symptoms (including death) during the 5 days after starting drug infusion.

Improvement in dyspnea

<table>
<thead>
<tr>
<th>Patients improved (%)</th>
<th>Levosimendan + SOC (n=299)</th>
<th>Placebo + SOC (n=301)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 hrs</td>
<td>65.3%</td>
<td>46.2%</td>
</tr>
<tr>
<td>24 hrs</td>
<td>86.9%</td>
<td>75.2%</td>
</tr>
<tr>
<td>48 hrs</td>
<td>92.6%</td>
<td>86.0%</td>
</tr>
<tr>
<td>Day 3</td>
<td>96.6%</td>
<td>89.9%</td>
</tr>
<tr>
<td>Day 5</td>
<td>98.3%</td>
<td>92.0%</td>
</tr>
</tbody>
</table>

Generalized linear model p=0.018

Effects of levosimendan vs placebo on top of standard of care on dyspnea in patients with AHF.4

*Includes mild, moderate and marked improvement on a 7-point scale

The hemodynamic effects of SIMDAX® on cardiac output (CO) and pulmonary capillary wedge pressure (PCWP) have been shown in several clinical trials.1-3

The effect of SIMDAX is sustained,1,4 as also seen in a prolonged decrease of brain natriuretic peptide in the SURVIVE clinical trial.4

References:
...THE BENEFITS ARE PRONOUNCED IN THE PRESENCE OF β-BLOCKERS

In the ESC heart failure guidelines, SIMDAX® is recommended for acute heart failure in patients with reduction of cardiac output and in presence of β-blockers. SIMDAX® can be used in patients receiving beta-blocking agents without loss of efficacy.

Indeed a beneficial effect on 31 days survival is also noticeable in presence of β-blockers.

Effect of previous beta-blocker use on cardiac output (CO) and pulmonary capillary wedge pressure (PCWP) after a 24-hour infusion of levosimendan or dobutamine at 24 hours post-baseline (LIDO)²

<table>
<thead>
<tr>
<th>Day</th>
<th>Use of β-blocker</th>
<th>Favours</th>
<th>Deaths, N (%)</th>
<th>P-value</th>
<th>Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Levosimendan</td>
<td>Dobutamine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–5</td>
<td>Yes</td>
<td>5 (1.5)</td>
<td>24 (7.3)</td>
<td>0.01</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>17 (5.1)</td>
<td>23 (7.0)</td>
<td>0.87</td>
<td>0.84</td>
</tr>
<tr>
<td>0–14</td>
<td>Yes</td>
<td>15 (4.5)</td>
<td>44 (13.4)</td>
<td>0.10</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>25 (7.5)</td>
<td>44 (13.3)</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>0–31</td>
<td>Yes</td>
<td>24 (7.1)</td>
<td>55 (16.8)</td>
<td>0.29</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>31 (9.3)</td>
<td>60 (18.2)</td>
<td>0.62</td>
<td>0.62</td>
</tr>
</tbody>
</table>

Hazard ratios for all-cause mortality rates up to 31 days after levosimendan and dobutamine therapy (SURVIVE) stratified for beta-blocker use at the start of the study.²
HOW TO USE SIMDAX® IN AHF

Example of use
AHF patients with systolic dysfunction (LVEF < 40%) and with the following characteristics may be considered for SIMDAX® treatment:

• signs of hypoperfusion, i.e. cool extremities, oliguria
• severe pulmonary oedema
• inadequate response to traditional treatment (however, the start of the SIMDAX® infusion should not be unnecessarily delayed.)

Exclusion criteria
• severe hypotension and/or tachycardia
• severe renal impairment
• severe hepatic impairment
• history of Torsades de Pointes

Dosing
Dosing of SIMDAX® will be according to the SPC. However, the bolus dose should only be given if immediate effects are needed and the baseline blood pressure is > 120 mmHg. 1 Thus, in most cases:

• SIMDAX®-infusion will be started with an infusion rate of 0.1 mcg/kg/min.
• The rate can be increased to 0.2 mcg/kg/min if further effect is warranted or decreased to 0.05 mcg/kg/min if adverse effects (e.g. hypotension) occurs.
• The maximum duration of the infusion should not exceed 24 hours.

What to expect?

Haemodynamic and neurohormonal effects

<table>
<thead>
<tr>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulmonary capillary wedge pressure ↓↓↓</td>
</tr>
<tr>
<td>Cardiac output (index) ↑↑</td>
</tr>
<tr>
<td>Stroke volume ↑</td>
</tr>
<tr>
<td>Systemic vascular resistance ↓↓</td>
</tr>
<tr>
<td>Pulmonary vascular resistance ↓↓</td>
</tr>
<tr>
<td>Natriuretic peptide levels ↓↓↓</td>
</tr>
</tbody>
</table>

↓ = decrease, ↑ = increase

Other clinical effects

- Relief of symptoms of heart failure
- Effects maintained also with beta-blockers
- Sustained effects due to an active metabolite
- No development of tolerance
- No increase in myocardial oxygen consumption
- Anti-ischemic effect
- No impairment of diastolic function

IN AHF THE EFFECTS OF SIMDAX® ALLOW A SHORTER HOSPITAL STAY

SIMDAX®, on top of standard of care, shortens hospital stay in acute heart failure. These data have been shown in a phase III study (vs placebo).¹ ²

Hospital stay is reduced by 1.92 DAYS

Hospitalization length of acute heart failure patients

Data from an economic analysis of the REVIVE II study of 600 patients hospitalized for treatment of acute decompensated heart failure.³
These results are corroborated by a meta-analysis of 8 studies in which SIMDAX® was used in cardiology settings:

Length of stay in hospital was decreased by 1.59 days in SIMDAX® treated patients in addition to a significant reduction in mortality.1

Meta-analysis of the levosimendan effects on length of stay in hospital

<table>
<thead>
<tr>
<th>Study ID</th>
<th>WMD</th>
<th>(95% CI)</th>
<th>Weight %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bergh CH 2010</td>
<td>-1.40</td>
<td>(-9.00, 6.20)</td>
<td>0.92</td>
</tr>
<tr>
<td>Duygu H 2008a</td>
<td>0.00</td>
<td>(-1.10, 1.10)</td>
<td>17.48</td>
</tr>
<tr>
<td>Duygu H 2008b</td>
<td>-2.00</td>
<td>(-2.62, -1.38)</td>
<td>23.69</td>
</tr>
<tr>
<td>Follath F 2002</td>
<td>0.80</td>
<td>(-2.59, 4.19)</td>
<td>4.09</td>
</tr>
<tr>
<td>Mebazaa A 2007</td>
<td>-2.50</td>
<td>(-5.51, 0.51)</td>
<td>4.99</td>
</tr>
<tr>
<td>Packer M 2013</td>
<td>-1.60</td>
<td>(-2.56, -0.64)</td>
<td>19.28</td>
</tr>
<tr>
<td>Parissis JT 2007</td>
<td>-2.60</td>
<td>(-3.63, -1.57)</td>
<td>18.28</td>
</tr>
<tr>
<td>Trikas A 2006</td>
<td>-2.00</td>
<td>(-3.71, -0.29)</td>
<td>11.27</td>
</tr>
<tr>
<td>Overall (I²=54.9% p=0.030)</td>
<td>-1.59</td>
<td>(-2.33, -0.85)</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Note: Weights are from random effects analysis.

BETTER OUTCOME THAN WITH OTHER VASOACTIVE I.V. AGENTS

ALARM-HF1 registry

The effect of i.v. vasoactive drugs on in-hospital mortality was studied in 4,953 AHF patients (Figure 1. unadjusted analysis).

A propensity-based analysis was performed to compare in-hospital mortality of patients treated only with SIMDAX® versus those treated with only catecholamines showing a significant reduction in the risk of in-hospital mortality (HR 0.25, 95% CI 0.07–0.85).

Figure 1: Effect of the main intravenous (IV) drugs administered during first 48 h in acute heart failure (AHF) patients on in-hospital mortality.
The use of SIMDAX® was associated with improved survival.

A meta-analysis of 23 studies describing the use of SIMDAX® in cardiology settings showed a 25% risk reduction [SIMDAX® 441/2207 (20.0%), control 484/1893 (25.6%), RR=0.75 (95% CI 0.63, 0.91), p for effect: 0.003, p for heterogeneity: 0.131, NNT=18].

IMPROVEMENT OF HEMODYNAMIC PARAMETERS IN CARDIOGENIC SHOCK

SIMDAX® increases cardiac index in patients who did not improve with conventional therapy (including use of dobutamine and norepinephrine)¹

Levosimendan has effects on both left and right ventricular performance

-24 = 24 h before levosimendan application;
0 = application of levosimendan after conventional therapy;
3, 24, 48 = time after levosimendan application
...WITH NO COMPROMISE ON OUTCOME

SIMDAX® was compared with enoximone in 32 patients with refractory cardiogenic shock complicating acute myocardial infarction.¹

The standard of care consisted of immediate revascularisation by percutaneous coronary intervention, IABP, fluid resuscitation and conventional inotropes.

SIMDAX® use was associated with similar hemodynamic effects, but mortality was significantly lower.

Sixty patients developing clinical signs of heart failure or cardiogenic shock within 48 hours after a primary percutaneous coronary intervention were randomized to a 25 hour infusion of SIMDAX® or placebo.¹

SIMDAX® significantly improved the change in wall motion score index from baseline to day 5 as measured by echocardiography (see chart).¹

One and four patients died in the SIMDAX® and placebo groups, respectively.¹

Levosimendan effect on wall motion score index in acute heart failure following acute coronary syndrome

In the placebo-controlled RUSSLAN trial, 6-hour infusions of SIMDAX® were shown to be safe in patients who developed heart failure after an acute myocardial infarction, and significantly increased survival at 14 days after administration.¹

The positive effect of SIMDAX® on survival in these settings was confirmed by a recent meta-analysis of nine studies.²

The effect of levosimendan on survival in acute heart failure following acute myocardial infarction

Mortality in 504 patients with left ventricular failure complicating acute myocardial infarction, the RUSSLAN trial.¹

RECOMMENDATION ON THE USE IN ACS RELATED AHF

Expert panel consensus on the use of vasoactive drugs in acute heart failure related to acute coronary syndrome\(^1,a\)

<table>
<thead>
<tr>
<th>Killip class</th>
<th>II, rales, pulmonary congestion</th>
<th>III, acute pulmonary edema</th>
<th>IV, hypotension or CS</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHF/CS, segmentation by SBP</td>
<td>SBP>110 mmHg</td>
<td>85<SBP<110 mmHg, worsening of HF</td>
<td>85<SBP<110 mmHg, decreasing</td>
</tr>
<tr>
<td>Loop diuretic (e.g. furosemide i.v.)</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>β-blocker</td>
<td>maintain</td>
<td>reduce or withdraw according to patient status(^b)</td>
<td>withdraw(^b)</td>
</tr>
<tr>
<td>Vasodilator (e.g. nitrate)</td>
<td>+</td>
<td>+ initially</td>
<td>+ initially</td>
</tr>
<tr>
<td>Inotrope I.V. (e.g. dobutamine)</td>
<td>–</td>
<td>+ initially</td>
<td>+ in case of poor response to standard therapy</td>
</tr>
<tr>
<td>Vasopressor i.v. (e.g. norepinephrine)</td>
<td>–</td>
<td>– not initially</td>
<td>– not initially</td>
</tr>
<tr>
<td>Inodilator i.v. levosimendan</td>
<td>–/+ (when β-blocker is used and urinary output is insufficient after diuretics)</td>
<td>–/+ (when β-blocker is used and urinary output is insufficient after diuretics)</td>
<td>+ (When SBP>90 mmHg; if hypotensive response, consider filling or combining vasopressor)</td>
</tr>
<tr>
<td>ECMO, LVAD, (IABP(^c))</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

ACS = acute coronary syndrome; AHF = acute heart failure; CI = cardiac index; CS = cardiogenic shock; ECMO = extracorporeal membrane oxygenation; IABP = intra-aortic balloon pump; LVAD = left ventricular assist device; SBP = systolic blood pressure.

\(^a\) Monitoring, fluid challenge, arrhythmia care, cardiac catheter including angiography/Percutaneous Coronary Intervention (PCI).
\(^b\) Some patients in this class need β-blockade despite hemodynamic impairment, to manage ventricular arrhythmias, or to rate control AF.
\(^c\) IABP is indeed not recommended by the most recent STEMI ESC guidelines but in case of mechanical complication.

DOSING AND MONITORING IN ACS RELATED AHF

SIMDAX® dosing:

- The recommended infusion rates are 0.05–0.1 µg/kg/min for 24 hours
- Bolus dose should be avoided due to the risk of hypotension. If a faster onset of action is needed, an infusion of 0.2 µg/kg/min could be used during the first 60 min

Monitoring of treatment:

- Hypotension, a potential side effect of SIMDAX®, is of particular concern in patients with ACS
- Continuous hemodynamic monitoring is recommended. This includes ECG, blood pressure, SaO2, heart rate, urinary output, potassium levels, and clinical signs. End-organ function (liver, kidney, mental status) should be evaluated

Reference: 1. SIMDAX® SPC.
EASING THE CHALLENGE OF TREATING THE FAILING HEART \(^1\) WITH LONG LASTING HEMODYNAMIC STABILIZATION

SIMDAX\textregistered GIVES YOU TIME BY PROVIDING:

- Hemodynamic improvement2,3
- Symptomatic improvement2,3
- Sustained effects2
- Synergies with β-blockers4
- Shorter hospital stay5,6

References: